In trading strategy, news analysis refers to the measurement of the various Qualitative data and quantitative attributes of textual (unstructured data) news stories. Some of these attributes are: sentiment, relevance, and novelty. Expressing news stories as numbers and metadata permits the manipulation of everyday information in a mathematical and statistical way. This data is often used in financial markets as part of a trading strategy or by businesses to judge market sentiment and make better business decisions.
News analytics are usually derived through automated text analysis and applied to digital texts using elements from natural language processing and machine learning such as latent semantic analysis, support vector machines, "bag of words" among other techniques.
A large number of companies use news analysis to help them make better business decisions.Tetlock, Paul C., Does Public Financial News Resolve Asymmetric Information?(November 1, 2008). Available at SSRN: http://ssrn.com/abstract=1303612 Academic researchers have become interested in news analysis especially with regards to predicting stock price movements, volatility and traded volume. Provided a set of values such as sentiment and relevance as well as the frequency of news arrivals, it is possible to construct news sentiment scores for multiple asset classes such as equities, Forex, fixed income, and commodities. Sentiment scores can be constructed at various horizons to meet the different needs and objectives of high and low frequency trading strategies, whilst characteristics such as direction and volatility of asset returns as well as the traded volume may be addressed more directly via the construction of tailor-made sentiment scores. Scores are generally constructed as a range of values. For instance, values may range between 0 and 100, where values above and below 50 convey positive and negative sentiment, respectively.
Example 1
Scenario: The gap between the news sentiment scores for direction, , of Company and Market has moved beyond . That is, ≥ .
Action: Buy the stock on Company and short the future on Market .
Exit Strategy: When the gap in the news sentiment scores for direction of Company and Market has disappeared, = , sell the stock on Company and go long the future on Market to close the positions.
Example 2
Scenario: The news sentiment score for volatility of Company goes above out of indicating an expected volatility above the option implied volatility.
Action: Buy a short-dated straddle (the purchase of both a put and a call) on the stock of Company .
Exit Strategy: Keep the straddle on Company until expiry or until a certain profit target has been reached.
Example 1
Scenario: The news sentiment score for direction of Company goes above out of .
Action: Buy the stock on Company .
Exit Strategy: When the news sentiment score for direction of Company falls below , sell the stock on Company to close the position.
Example 2
Scenario: The news sentiment score for direction of Sector goes above out of .
Action: Include Sector as a tactical bet in the asset allocation model.
Exit Strategy: When the news sentiment score for direction of Sector falls below , remove the tactical bet for Sector from the asset allocation model.
Example 1
Scenario: The bank operates a VaR model to manage the overall market risk of its portfolio.
Action: Estimate the portfolio covariance matrix taking into account the development of the news sentiment score for volume. Implement the relevant hedges to bring the VaR of the bank in line with the desired levels.
Example 2
Scenario: A portfolio manager operates his portfolio towards a certain desired risk profile.
Action: Estimate the portfolio covariance matrix taking into account the development of the news sentiment score for volume. Scale the portfolio exposure according to the targeted risk profile.
Example 1
Scenario: A large order needs to be placed in the market for the stock on Company .
Action: Scale the daily volume distribution for Company applied in the algorithmic trading system, thus taking into account the news sentiment score for volume. This is followed by the creation of the desired trading distribution forcing greater market participation during the periods of the day when volume is expected to be heaviest.
|
|